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The microRNAs are short noncoding RNA molecules responsible for translational
repression and silencing of target genes via binding to the mRNA. They are found in
all eukaryotic cells and play a critical role in virtually all physiological processes,
including within the cardiovascular system where they influence cellular development,
differentiation, cardiovascular function, hemostasis, and programmed cell death.
Dysregulated microRNA expression is associated with several conditions ranging
from cancer and autoimmune disease to infection. Progressively, it has become
increasingly clear that microRNAs are important components of the host response
to microbes. The cardiovascular system, coupled with cells of the innate immune
system, provide the initial interaction and first response to microbial infection,
respectively. This review presents the current state of knowledge regarding the role

= sepsis

The vascular endothelium is a large heterogeneous organ that
forms the innermost lining of the vasculature.! It is a highly
metabolically active monocell layer that protects against injury
and regulates systemic blood flow and tissue perfusion.2 In
addition to regulating systemic blood flow, the endothelium
plays a key role in maintaining barrier integrity which controls
the movement of fluid, ions, and other macromolecules between
circulating blood and surrounding tissues. This is achieved by
tight control and coordinated opening and closure of endothe-
lial-endothelial cell connections.? These junctional connections
are mediated by homophilic interactions which form a zipper-
like structure at the endothelial cell border.” Adherens and tight
junction proteins ensure tight endothelial cell-cell attachment
(=Fig. 1). Adherens junctions are mediated by vascular en-
dothelial-cadherin, which is linked to critical intracellular pro-
teins, such as p120-catenin, a-catenin, and B—catenin.6 Tight
junctions are mediated by members of the claudin family, which
in turn recruit other “facilitators,” such as occludin, junctional
adhesion molecule, and zona occludens-1 to solidify the
attachment.”

Following vessel injury, tissue damage, or infection, the
endothelium regulates recruitment and extravasation of proin-
flammatory leukocytes and platelets through the release of a
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of microRNAs with emphasis on their role in controlling endothelial cell function.

myriad of chemokines and cytokines that trigger the upregula-
tion of cell adhesion molecules.? Both platelets and leukocytes
roll along the endothelium in a tightly regulated fashion.? The
selectin family of adhesion molecules plays a key role in this
event. For example, E-selectin is synthesized by cytokine-
activated endothelial cells, and P-selectin is released from
Weibel-Palade bodies and expressed on the endothelial cell
surface.'® Upon stationary adhesion to endothelial cells, leu-
kocytes downregulate the selectin-based adhesion and upre-
gulate B 2 integrins, CD11a/CD18 (LFA-1) and CD11b/CD18
(Mac-1), which in turn promote firm adhesion to intercellular
adhesion molecule 1 (ICAM-1) expressed on endothelial cells.
Once this process is complete, the leukocyte rapidly emigrates
into the surrounding tissue. Weibel-Palade bodies also release
von Willebrand factor (VWF), which forms large and ultralarge-
VWEF multimers on the endothelial cell surface, which results in
platelet recruitment via the GPIb-V-IX complex in the presence
of shear stress."" Intraplatelet activation triggers the fibrino-
gen-mediated cross-linking of activated platelets via GPIIb/IIla
(integrin ollbB3), to finally generate a stable aggregate for
arresting blood loss.'?'3 Aggregate formation is solidified
when activated endothelial cells express tissue factor (TF) on
its surface. TF acts as a cofactor for factor (F) VII proteolysis, by
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Fig. 1 The composition of tight junction and adherens junction
complexes. Tetramembrane spanning proteins claudins and occludins
bind their intracellular binding partners including the ZO family or
directly to the actin cytoskeleton in the case of occludin. JAMs traverse
the membrane just once and are also capable of binding the ZO-1
adaptor protein. Adherens junctions are largely mediated by
VE-cadherin, a protein that binds to the p120 complex. The nectin
molecule behaves as an integral member of both the tight and
adherens junctions by binding to its intracellular binding partner AF6.
AF6, afadin 6; JAMs, junctional adhesion molecules; VE-cadherin,
vascular endothelial-cadherin; ZO, zonula occludens.

forming a TF/FVIla complex which proteolytically cleaves
FIX/FX to FIXa/FXa, so promoting the subsequent steps leading
to thrombin generation.'#~'® Thrombin converts fibrinogen to
fibrin and promotes fibrin cross-linking coupled with aggre-
gated platelets to form a stable blood clot on the endothelial
surface, thus attenuating blood loss from injured sites.'®'8

Dysregulation of normal endothelial cell functions has been
implicated in several conditions, including atherosclerosis,
diabetes, tumor metastasization, inflammatory disease, and
infection.'® However, the processes involved in such dysregu-
lation are incompletely understood, although are known to
involve the signal transduction pathways responsible for
modifying the transcriptional regulation of gene expression
allowing posttranscriptional and translational modifications
within the endothelial cell?%?!" MicroRNAs (miRNAs) are
critical regulators of gene expression and their role in regulat-
ing endothelial cell gene expression in response to insult or
injury remains largely unexplored.?2 Here, we describe the role
of miRNAs induced upon endothelial cell infection and their
role in either causing or mitigating dysregulation of endothelial
cell function as it relates to hemostasis and other essential
homeostatic processes.

miRNA Biogenesis and Function

miRNA are short (~18-22 nucleotides) posttranscriptional
and translational repressors of gene expression.”> miRNA
bind messenger RNA (mRNA) with partial or complete Watson
and Crick base pairing.>* Briefly, miRNA are transcribed in a
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Fig. 2 miRNA are initially transcribed by RNA polymerases in the
nucleus as large primary-miRNA transcripts and subsequently
processed to pre-miRNA as described above. Pre-miRNA translocates
to the cytoplasm where an enzymatic complex composed Dicer and its
double-stranded binding partner process pre-miRNA to mature
miRNA transcripts. A single strand (-3p or -5p) is loaded onto and
guides the RISC to its respective mRNA targets facilitating
spatiotemporal regulation of gene expression. miRNA, microRNA;
pre-miRNA, precursor-miRNA; RISC, RNA-induced silencing complex;
RNA, ribonucleic acid.

mono- or polycistronic fashion throughout the genome by
RNA polymerases, thereby forming large primary-miRNA
transcripts (pri-miRNA) (~Fig. 2).25727 Pri-miRNA is further
processed by the microprocessor, a complex comprised of
Drosha and its double-stranded binding partner DiGeorge
syndrome critical region gene 8. This microprocessor produces
an approximately 70-nt stem and loop precursor-miRNA (pre-
miRNA) from the pri-miRNA which harbors mismatches along
aduplex.?® Alternatively, miRNA sequences located within the
extronic region are processed by the spliceosome to form
miRTrons, which also serve as precursors for the genesis of
mature miRNA.?>3% Pre-miRNA translocates from nucleus
to cytoplasm coupled to exportin-5/RanGTP, which releases
pre-miRNA once the enzyme Ran-GTPase catalyzes the break-
down of guanosine triphosphate to guanosine diphosphate +
Pi.3"32 Pre-miRNA is further processed by Dicer and its
double-stranded binding partner and Argonaute (Ago) family
members I to IV, to form mature double-stranded miRNA with
atwo nucleotide overhang on both its 3’ and 5’ ends.>> A single
strand (3’ or 5') is loaded onto the RNA-induced silencing
complex (RISC), a large multiprotein complex comprising
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predominantly Ago 2.3473® The miRNA guides RISC to mRNA,
where it binds to mRNA at positions 2 to 8, commonly referred
to as “the miRNA seed sequence.” The degree of complemen-
tarity between the miRNA and its target mRNA dictates the
effect a miRNA elicits upon the target whereby high comple-
mentarity between miRNA and mRNA results in catalytic
cleavage of mRNA by RISC.>"3° Low complementarity does
not bring RISC close enough to cleave the mRNA, but it
prevents transfer RNA delivery of amino acids and thus pre-
vents ribosome synthesis of polypeptide chain.*%4!

Endothelial Cell Regulation by MiRNAs

The importance of endothelial regulation by miRNA is indicated
by the vast endothelial dysfunction induced in response to Dicer
inactivation.*?*> miRNA (miR)-126, in particular, being specific
to all vascular endothelial cell beds, is a major regulator of
endothelial function, including processes, such as endothelial
proliferation, permeability, and apoptosis.** Wang et al, demon-
strated that targeted deletion of miR-126 leads to reduced
Sprouty-related, EVH1 domain-containing protein 1 expres-
sion, a negative regulator of angiogenesis, ultimately leading to
reduced vascular integrity. This implicates the involvement of
miR-126 in controlling the process of angiogenesis.** miR-126
has also been implicated in regulating endothelial permeability
by interacting with vascular cell adhesion molecule-1 (VCAM-1)
and ICAM-1 under the influence of miR17-3p.*> Other miRNAs
associated with maintenance of junctional protein complex,
angiogenesis, and apoptosis include miR-221/222 and miR-21.
Both these miRNAs are thought to be antiproliferative, while
miR-21 has been demonstrated to negatively regulate proapop-
totic proteins, such as phosphatase and tensin homolog and
B-cell lymphoma 2.46-%° Interestingly, miR-21 has been shown
to modulate expression of Rho-GTPases, essential proteins for
actin organization, in human umbilical vein endothelial cells
(HUVEGs). Specifically, miR-21 has been shown to target RhoB
expression in these endothelial cells, which affect vital pro-
cesses, such as cell adhesion and actin organization.

Recent studies indicate a significant role of vascular inflam-
mation in the development of venous thrombus development.>°
Importantly, activation of the inflammatory response is largely
influenced by miRNA regulation of pathways including nuclear
factor-kappa B (NF-kB), activator protein 1, and mitogen-acti-
vated protein kinase/early growth response protein 1 signal-
ing.>' miR-146 has a critical role in endothelium activation in
response to inflammation.”' >3 Upon endothelial exposure to
interleukin (IL)-1B and tumor necrosis factor (TNF)-«, miR-146
is significantly increased, thus preventing endothelium activa-
tion by binding to human antigen R, a signaling molecule
required for activating endothelial cells through endothelial
NOS (eNOS) expression.”' Although miR-10a, miR-17-5p,
miR-31, and miR-181b°*° are implicated in a positive-feed-
back loop pertaining to anti-inflammatory cytokine production
(IL-4, IL-10, IL-13, and interferon-ot), Rajput et al suggested that
enhancing miR-146 in the vasculature may confer a broader
anti-inflammatory role. Conversely, Olivieri et al identified miR-
146a as a potential biomarker for the senescence-associated
proinflammatory status of vascular cells, including HUVECs and
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human coronary artery endothelial cells.>”*® In addition to
miR-146, Sun et al later assessed the role of miR-181b and found
that it effectively regulated the NF-kB pathway by inhibiting
importin-a3, an essential protein for induction of VCAM-1 and
E-selectin.>* Collectively, these studies indicate that specific
miRNAs may contribute to regulating the vascular response to
inflammatory mediators. This may, therefore, imply a role for
miRNAs in modulating thrombus development under inflam-
matory conditions, but further studies will be required to
explore this possibility.

Endothelial barrier function is essential for the vascular
integrity and preventing procoagulant blood-borne mediator
contact of the extravascular tissue, thus ultimately preventing
unnecessary thrombin generation or platelet activation. Inter-
estingly, recent publications have highlighted the critical nat-
ure of miRNA in maintaining the semipermeable nature of the
endothelial monolayer, largely through regulation of tight
junction proteins.®>®® miR-150 upregulated Tie2 in a mouse
model of sepsis, indirectly leading to downregulation of clau-
din-5 and increasing vascular permeability.®'-62 Using miR-150
(—/— ) mice and endothelial cells (in vitro analysis), Rajput et al
observed a persistent increase in angiopoietin-2 levels, thus
resulting in irreversible loss of vascular permeability. Upregu-
lation of miR-150 restored junctional reannealing and reestab-
lished barrier function both in vivo and in vitro. The mRNA
transcript of vital junction protein zonula occludens-1 (ZO-1)
was shown to be a direct target of many miRNAs, including
miR-98, miR-18a, and miR-105 in other cell types, and there-
fore ZO-1 may be the target miRNA regulation within the
endothelium.®3-%°

Given the earlier mentioned vast endothelial dysregula-
tion following Dicer inactivation, it is not surprising that
miRNA may be connected to cardiovascular disease and
other inflammatory conditions characterized by vascular
defects. Notably, however, individual miRNA dysregulation
does not tend to cause lethality in vivo.®® This may be due to
the redundancy found within this vast network of miRNA
signaling. Although miRNA networks behave collectively as a
critical regulatory system, with stated exceptions, many
miRNAs were not found to exert a substantial negative effect.

Endothelial Cell Dysregulation by miRNAs
Following Infection

As described, miRNA dysregulation in the endothelium is
likely a substantial trigger for endothelial dysfunction and
barrier degradation. Thus, there is ground for linking en-
dothelial miRNA dysregulation to barrier degradation and
functional degradation of the endothelium observed under
acute inflammatory conditions, including sepsis.

Vascular endothelial cells represent a major target for
bacterial attachment. Many studies have now demonstrated
that bacterial binding to the vascular endothelium triggers a
series of events contributing to the pathophysiology of sepsis.
For example, following bacterial binding, VWF is released from
endothelial Weibel-Palade bodies, thus contributing to rapid
platelet translocation and thrombus formation.®’ A coordi-
nated decrease of circulating anticoagulant factors together
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with increased cell surface shedding of thrombomodulin leads
to a decrease of activated protein C (APC) generation. APC, in
particular, plays a critical role in maintaining hemostasis, since
reduced values of protein C (PC)/APC predispose to thrombosis.
Collectively, this coagulopathy culminates in disseminated
intravascular coagulation (DIC).68 TF is an important under-
lying trigger for DIC, and is expressed on, and released from,
stimulated leukocytes, monocytes, and circulating micropar-
ticles.?? Loss of endothelial barrier integrity due to reduced
expression of junction proteins between the endothelial cells
results in fluid leakage into the extravascular space, thus
leading to life-threatening edema in septic patients. Vascular
endothelial cells are both active participants in, and regulators
of, inflammatory processes, thus directing the innate immune
response to infections. Notably, there is significant evidence
accumulating that all of these processes are at least partially
controlled by a significant change in endothelial miRNA ex-
pression profile following infection. These dysregulated miR-
NAs can affect the endothelial cell itself (intrinsically) or
extrinsically modulate the immune/inflammatory response
by releasing miRNAs encapsulated in extracellular vesicles.””

Intrinsic Endothelial miRNA Dysregulation
Following Infection and Inflammation

Intrinsic dysregulation of miRNA in the endothelium is cur-
rently being uncovered as an essential stage in the pathogenesis
of sepsis, although prior knowledge in this area is noticeably
limited. Upon infection, the miRNA profile of endothelium is
altered, worsening the condition of the host, and so allowing the
pathogen to further manipulate the internal cellular environ-
ment (~Table 1).” For example, miR-23b is a central regulator
of the inflammatory pathway.68 Upon exposure to lipopolysac
charide (LPS), a common method for experimentally inducing a
sepsis-like environment, miR-23b was significantly downregu-

Table 1 Targets and functions of intrinsic endothelial miRNA
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lated in a two-dimensional model using a cultured inhibitor of
DNA binding/differentiation-3 human VECs. In the absence of
LPS, miR-23b naturally targets proinflammatory cytokine
gene expression, such as NF-kB, TNFq, and IL-6, to inhibit the
inflammatory response. Therefore, downregulation of miR-23b
within cultured cells leads to overexpression of proinflamma-
tory cytokines and ultimately to the excessive inflammatory
response associated with sepsis.”? The presence of infectious
organisms can alter the miRNA expression patterns of endothe-
lial cells.”®> This may lead to suppression of inflammatory
endothelial regulators resulting in sustained production of
the aforementioned proinflammatory cytokines (i.e., TNFx).>

miR-210 expression in endothelial cells has been implicated
in chronic vascular diseases characterized by endothelial dys-
function, including atherosclerosis. Known to contribute in
plaque formation, miR-210 was later discovered to play a
specific role in endothelial apoptosis by directly targeting
pyruvate dehydrogenase kinase 1 in an atherosclerosis setting.
Upon induction of atherosclerosis in mice, Liu et al recently
found that apoptosis was notably increased in CD31+ endothe-
lial cells compared with healthy mice. Increased apoptosis was
found to correlate with the increase of miR-210 and apoptosis
was lessened upon inhibition of this miRNA.”

Extrinsic Endothelial miRNA Dysregulation
in Vascular Disease

Recent studies indicate that endothelial miRNA expression can
be regulated by extrinsic factors, specifically extravascular
vesicles (EVs). There are several morphologically distinct classes
of EVs, including exosomes, microparticles, and apoptotic bodies.
Apoptosis (programmed cell death) is a nonrandom process; the
biological material is selectively packaged into large apoptotic
bodies (1-5 pm in diameter) before being released into
the extracellular environment.®8! Microparticles, commonly

miRNA Target gene(s) Endothelial cell function References
miR23b TNFo Prevents overexpression of 72
proinflammatory cytokines
miR27a TNFa Prevents overexpression of 74
IL6 proinflammatory cytokines
miR181b Z0-1 Regulates endothelial junctions and 73
VE-Cadherin endothelial differentiation
miR181a KLF6 Maintains blood-brain barrier 76
miR126-5p DLK1 Promotes endothelial proliferation 44
miR17~92 cluster miR19a Regulates WNT pathway 7
miR19a FZD4/LRP6 Regulates the WNT pathway 7
miR98 FIH-1 Regulates vascular permeability 63
miR107 Z01 Regulates endothelial junctions 78
miR210 PDK1 Regulates endothelial apoptosis 79
miR150 Tie2 Regulates blood-brain barrier permeability 62

Abbreviations: DLK1, delta-like 1 homolog; FIH-1, factor inhibiting HIF-1; FZD4, frizzled 4; IL-6, interleukin 6; KLF6, Kriippel -like factor 6; LRP6, low-density
lipoprotein receptor-related protein 6; miR, microRNA; PDK1, 3-phosphoinositide-dependent kinase 1; Tie2, tyrosine kinase with Ig and epidermal growth
factor homology domain 2; TNFa, tumor necrosis factor-a; VE-cadherin, vascular endothelial-cadherin; WNT, wingless int-1; ZO-1, zonula occludens.
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referred to as “ectosomes” or “shed microvesicles,” are a class of
cellular membrane-derived lipid vesicle ranging from 0.1 to 1 um
in diameter.®? Their formation requires reorganization of phos-
pholipid bilayer and cytoskeleton, thus ultimately facilitating the
outward “blebbing” of plasma membrane.®3-3® Exosomes, on
the other hand, are nanovesicles (30-120 nm in diameter), and
their formation is a downstream process associated with the
endosomal pathway—late endosomes.®” Multivesicular bodies
(MVBs) form when the limiting membrane of late endosomes
invaginates inwards forming intraluminal vesicles (ILVs). The
term exosome refers to ILVs released into the extracellular milieu
when MVBs fuse with the plasma membrane.

It is well documented that EVs are elevated in acute and
chronic inflammatory diseases while circulating EV load in-
creases in parallel with the severity of the disease.833% vascular
endothelial cells are believed to be one of the major cell types
contributing to EV load in vivo.”® The endothelium can alter
gene expression patterns of a plethora of cell types through
transport of EV encapsulated miRNAs (EV-miRNAs).?"9? Curtis
et al reported that the potent proinflammatory cytokine TNFa
promoted the release of endothelial-derived extracellular
vesicles (EG-EVs) in human aortic endothelial cells.”? Further-
more, Yamamoto et al showed that inflammatory miRNAs,
released from EC-EVs, mediated an inflammatory response in
pericytes, whose primary functions involve modulation of
endothelial cell phenotypes and intracellular signaling path-
ways.>*> Shear responsive transcription factor Kriippel-like
factor 2 (KFL2) binds to the miR-143/145 cluster and promotes
its expression. Hergenreider et al demonstrated that endothe-
lial cells transduced with KFL2 released EVs enriched in
miR-143/45, which was effective to reduce atherosclerotic
lesion formation in the aorta of ApoE '~ mice.”® Upon TNF«
stimulation, Zhang et al showed that HUVECs shed micropar-
ticles harboring proangiogenic miRNAs (miR-106b, miR-25,

Watkin et al.

miR-92, and miR-21)in the extracellular milieuin vitro.%” Shed
microparticles from activated or apoptotic endothelial cells
transfer miR-222 to neighboring endothelial cells, thus redu-
cing the expression of ICAM-1 and abating monocyte adher-
ence in vitro and in vivo (ApoE~/~ mice).?® Jansen et al reported
that miR-126-enriched EG-MPs promoted vascular repair
under hyperglycemic conditions, while miR-126 knockdown
limited reendothelialization in vivo.”® EC-EVs enriched in anti-
inflammatory miRNAs (miR-10, miR-126, miR-146, miR-147,
and miR-181b) repressed NF-kB signaling pathways by
targeting components including IRAK4 in monocytes.'% Re-
pression of NF-kB signaling has several adverse effects on the
endothelium, including downregulation of E-selectins (which
are needed for leukocyte adhesion) and suppression of proin-
flammatory cytokine release (i.e., TNFa and IL-1B).'0%.102
Although the role of EG-EVs has been investigated in inflam-
matory conditions involving the endothelium, the selective
transport of EVs by endothelial cells during infection has yet to
be explored. While EG-EV released miRNA are understood
to play a distinct role in endothelial function, how miRNAs
derived from EGEVs contribute to the characteristic loss of
coordination leading to development of sepsis remains unclear
(~Table 2).75-78.103-107

Conclusion

The role of dysregulated miRNAs in the pathophysiology of
immunothrombotic disease, particularly related to infection,
is tantalizing but remains to be fully elucidated. In particular,
recent evidence suggests that bacterial engagement with
endothelial cells results in significant increase of EVs contain-
ing an enhanced number of miRNAs. In turn, these molecules
help to aid inflammation and more impact directly upon
associated coagulopathy. Evidently, dysregulation of normally

Table 2 Targets and functions of extrinsic miRNA released by endothelial cells under inflammatory conditions

miRNA Target gene(s) Endothelial cell function References

miR-10 IRAK4; TAK1; BTRC Suppression of NF-kB signaling pathway 100

miR-21 RhoB Inhibits angiogenesis 49

miR-25 KLF4 Regulator of the inflammatory response 103

miR-92 KFL2/4; SOCS5 Regulation of the inflammatory response/ 104
modulator of endothelial dysfunction

miR-106b PTEN Dampens TNFo-induced apoptosis 105

miR-126 SPRED1 Promotes vascular repair 99

miR-143/145 Ssh1/2; Srgap1/2; Cdc42 Cytoskeletal remodeling and modulation 106
of actin dynamics

miR-146 TRAF6; IRAK1/2 Represses adhesion molecule expression >
and promotes eNOS production

miR-147 ADAM15 Regulates endothelial barrier function 107

miR-181b KPNA4 Regulator of NF-kB inflammatory pathway >4

Abbreviations: ADAM15, a disintegrin and metalloproteinase domain-containing protein 15; BTRC, B-transducing repeat containing; Cdc42, cell
division control protein 42; IRAK1, interleukin-1 receptor-associated kinase 1; IRAK4, interleukin-1 receptor-associated kinase 4; KLF4, Kriippel-like
factor 4; KPNA4, karyopherin subunit alpha 4; PTEN, phosphatase and tensin homolog; RhoB, Ras homolog family member B; SOCS5, suppressor of
cytokine signaling 5; SPRED1, Sprouty-related, EVH1 domain-containing protein 1; Srgap 1, SLIT-ROBO Rho GTPase activating protein 1; Ssh1,
slingshot protein phosphatase 1; TAK1, transforming growth factor B-activated kinase 1; TRAF6, TNF receptor-associated factor 6.
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tightly regulated miRNAs that sustain normal endothelial cell
function may trigger serious downstream functional effects,
and may contribute to modifications in vascular permeability
leading to excessive edema, loss of endothelial cell prolifera-
tion, and endothelial interaction with blood-borne procoagu-
lant factors to trigger thrombotic events. Also, dysregulated
miRNAs released from endothelial cells via EVs are capable of
instigating profound impacts on other circulating cells within
the cardiovascular system. Such an outcome may lead to the
excessive and sustained release of proinflammatory cytokines
from recruited leukocytes, which were shown to contribute to
the activated endothelial phenotype now associated with the
development of the thrombotic disease. As current antibiotic
treatment options for acute infection do not aim to modulate
these dysregulated miRNAs specifically, novel therapeutics
that reassert control on dysregulated miRNA expression pro-
files in endothelial cells may have significant benefit in coun-
tering cardiovascular disease.
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